Banach Algebras and Rational Homotopy Theory
نویسندگان
چکیده
Let A be a unital commutative Banach algebra with maximal ideal space Max(A). We determine the rational H-type of GLn(A), the group of invertible n × n matrices with coefficients in A, in terms of the rational cohomology of Max(A). We also address an old problem of J. L. Taylor. Let Lcn(A) denote the space of “last columns” of GLn(A). We construct a natural isomorphism Ȟ(Max(A);Q) ∼= π2n−1−s(Lcn(A))⊗ Q for n > 1 2 s+1 which shows that the rational cohomology groups of Max(A) are determined by a topological invariant associated to A. As part of our analysis, we determine the rational H-type of certain gauge groups F (X,G) for G a Lie group or, more generally, a rational H-space.
منابع مشابه
Derived Algebraic Geometry XIII: Rational and p-adic Homotopy Theory
1 Rational Homotopy Theory 4 1.1 Cohomological Eilenberg-Moore Spectral Sequences . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 k-Rational Homotopy Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Rational Homotopy Theory and E∞-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Differential Graded Lie Algebras . . . . . . . . . . ...
متن کاملar X iv : m at h / 00 10 12 6 v 1 [ m at h . A T ] 1 2 O ct 2 00 0 RATIONAL OBSTRUCTION THEORY AND RATIONAL HOMOTOPY SETS
We develop an obstruction theory for homotopy of homomorphisms f, g : M → N between minimal differential graded algebras. We assume that M = ΛV has an obstruction decomposition given by V = V0⊕V1 and that f and g are homotopic on ΛV0. An obstruction is then obtained as a vector space homomorphism V1 → H(N ). We investigate the relationship between the condition that f and g are homotopic and th...
متن کاملDisconnected Rational Homotopy Theory
We construct two algebraic versions of homotopy theory of rational disconnected topological spaces, one based on differential graded commutative associative algebras and the other one on complete differential graded Lie algebras. As an application of the developed technology we obtain results on the structure of Maurer-Cartan spaces of complete differential graded Lie algebras.
متن کامل4 Homotopy Operations and Rational Homotopy Type
In [HS] and [F1] Halperin, Stasheff, and Félix showed how an inductively-defined sequence of elements in the cohomology of a graded commutative algebra over the rationals can be used to distinguish among the homotopy types of all possible realizations, thus providing a collection of algebraic invariants for distinguishing among rational homotopy types of spaces. There is also a dual version, in...
متن کاملOperads, Algebras, Modules, and Motives
With motivation from algebraic topology, algebraic geometry, and stringtheory, we study various topics in differential homological algebra. The work is dividedinto five largely independent Parts:I Definitions and examples of operads and their actionsII Partial algebraic structures and conversion theoremsIII Derived categories from a topological point of viewIV Rational d...
متن کامل